Piezoelectric Energy Harvesting in Internal Fluid Flow

نویسندگان

  • Hyeong Jae Lee
  • Stewart Sherrit
  • Luis Phillipe Tosi
  • Phillip Walkemeyer
  • Tim Colonius
چکیده

We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration

The primary objective of this research is to develop a deploy-and-forget energy harvesting device for use in low-velocity, highly turbulent fluid flow environments i.e. streams or ventilation systems. The work presented here focuses on a novel, lightweight, highly robust, energy harvester design referred to as piezoelectric grass. This biologically inspired design consists of an array of cantil...

متن کامل

Flow energy harvesting with piezoelectric flags

In this article, energy harvesting with a fluttering cantilevered plate covered by piezoelectric patches in an axial flow is adressed. A theoretical model is presented which is then discretized and numerically integrated to perform a parametric study of the energy harvesting efficiency of the system. When one, two or three piezoelectric patches cover the plate, the optimal distributions of the ...

متن کامل

Investigation of the Size Effect on the Nano-beam Type Piezoelectric Low Power Energy Harvesting

In this paper, size dependent beam type peizoelectric energy hardvester is investigated. For this goal, first nonlinear formulation of isotropic piezoelectric Euler-Bernoulli nano-beam is developed based on the size-dependent piezoelectricity theory then special beam type piezoelectric energy hardvester is probed for different parameters. Basic nonlinear equations of piezoelectric nano-beam are...

متن کامل

Development of a laboratory system to investigate and store electrical energy from the vibrations of a piezoelectric beam

Energy harvesting from surrounding environment has been attractive for many researchers in recent years. Therefore, developing appropriate test apparatus to study energy harvesting mechanisms and their performance is of paramount importance. Due to their electromechanical characteristics, piezoelectric materials are used for harvesting energy from environmental vibrations. For optimum utili...

متن کامل

Development of a laboratory system to investigate and store electrical energy from the vibrations of a piezoelectric beam

Energy harvesting from surrounding environment has been attractive for many researchers in recent years. Therefore, developing appropriate test apparatus to study energy harvesting mechanisms and their performance is of paramount importance. Due to their electromechanical characteristics, piezoelectric materials are used for harvesting energy from environmental vibrations. For optimum utili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015